Chatbots are expected to be knowledgeable across multiple domains, e.g. for daily chit-chat, exchange of information, and grounding in emotional situations. To effectively measure the quality of such conversational agents, a model-based automatic dialogue evaluation metric (ADEM) is expected to perform well across multiple domains. Despite significant progress, an ADEM that works well in one domain does not necessarily generalize to another. This calls for a dedicated network architecture for domain generalization. To tackle the multi-domain dialogue evaluation task, we propose a Panel of Experts (PoE), a multitask network that consists of a shared transformer encoder and a collection of lightweight adapters. The shared encoder captures the general knowledge of dialogues across domains, while each adapter specializes in one specific domain and serves as a domain expert. To validate the idea, we construct a high-quality multi-domain dialogue dataset leveraging data augmentation and pseudo-labeling. The PoE network is comprehensively assessed on 16 dialogue evaluation datasets spanning a wide range of dialogue domains. It achieves state-of-the-art performance in terms of mean Spearman correlation over all the evaluation datasets. It exhibits better zero-shot generalization than existing state-of-the-art ADEMs and the ability to easily adapt to new domains with few-shot transfer learning.
translated by 谷歌翻译
The physics-informed neural operator (PINO) is a machine learning architecture that has shown promising empirical results for learning partial differential equations. PINO uses the Fourier neural operator (FNO) architecture to overcome the optimization challenges often faced by physics-informed neural networks. Since the convolution operator in PINO uses the Fourier series representation, its gradient can be computed exactly on the Fourier space. While Fourier series cannot represent nonperiodic functions, PINO and FNO still have the expressivity to learn nonperiodic problems with Fourier extension via padding. However, computing the Fourier extension in the physics-informed optimization requires solving an ill-conditioned system, resulting in inaccurate derivatives which prevent effective optimization. In this work, we present an architecture that leverages Fourier continuation (FC) to apply the exact gradient method to PINO for nonperiodic problems. This paper investigates three different ways that FC can be incorporated into PINO by testing their performance on a 1D blowup problem. Experiments show that FC-PINO outperforms padded PINO, improving equation loss by several orders of magnitude, and it can accurately capture the third order derivatives of nonsmooth solution functions.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Three-dimensional (3D) freehand ultrasound (US) reconstruction without a tracker can be advantageous over its two-dimensional or tracked counterparts in many clinical applications. In this paper, we propose to estimate 3D spatial transformation between US frames from both past and future 2D images, using feed-forward and recurrent neural networks (RNNs). With the temporally available frames, a further multi-task learning algorithm is proposed to utilise a large number of auxiliary transformation-predicting tasks between them. Using more than 40,000 US frames acquired from 228 scans on 38 forearms of 19 volunteers in a volunteer study, the hold-out test performance is quantified by frame prediction accuracy, volume reconstruction overlap, accumulated tracking error and final drift, based on ground-truth from an optical tracker. The results show the importance of modelling the temporal-spatially correlated input frames as well as output transformations, with further improvement owing to additional past and/or future frames. The best performing model was associated with predicting transformation between moderately-spaced frames, with an interval of less than ten frames at 20 frames per second (fps). Little benefit was observed by adding frames more than one second away from the predicted transformation, with or without LSTM-based RNNs. Interestingly, with the proposed approach, explicit within-sequence loss that encourages consistency in composing transformations or minimises accumulated error may no longer be required. The implementation code and volunteer data will be made publicly available ensuring reproducibility and further research.
translated by 谷歌翻译
Self-supervised monocular depth estimation (MDE) models universally suffer from the notorious edge-fattening issue. Triplet loss, as a widespread metric learning strategy, has largely succeeded in many computer vision applications. In this paper, we redesign the patch-based triplet loss in MDE to alleviate the ubiquitous edge-fattening issue. We show two drawbacks of the raw triplet loss in MDE and demonstrate our problem-driven redesigns. First, we present a min. operator based strategy applied to all negative samples, to prevent well-performing negatives sheltering the error of edge-fattening negatives. Second, we split the anchor-positive distance and anchor-negative distance from within the original triplet, which directly optimizes the positives without any mutual effect with the negatives. Extensive experiments show the combination of these two small redesigns can achieve unprecedented results: Our powerful and versatile triplet loss not only makes our model outperform all previous SoTA by a large margin, but also provides substantial performance boosts to a large number of existing models, while introducing no extra inference computation at all.
translated by 谷歌翻译
Transformer-based models, capable of learning better global dependencies, have recently demonstrated exceptional representation learning capabilities in computer vision and medical image analysis. Transformer reformats the image into separate patches and realize global communication via the self-attention mechanism. However, positional information between patches is hard to preserve in such 1D sequences, and loss of it can lead to sub-optimal performance when dealing with large amounts of heterogeneous tissues of various sizes in 3D medical image segmentation. Additionally, current methods are not robust and efficient for heavy-duty medical segmentation tasks such as predicting a large number of tissue classes or modeling globally inter-connected tissues structures. Inspired by the nested hierarchical structures in vision transformer, we proposed a novel 3D medical image segmentation method (UNesT), employing a simplified and faster-converging transformer encoder design that achieves local communication among spatially adjacent patch sequences by aggregating them hierarchically. We extensively validate our method on multiple challenging datasets, consisting anatomies of 133 structures in brain, 14 organs in abdomen, 4 hierarchical components in kidney, and inter-connected kidney tumors). We show that UNesT consistently achieves state-of-the-art performance and evaluate its generalizability and data efficiency. Particularly, the model achieves whole brain segmentation task complete ROI with 133 tissue classes in single network, outperforms prior state-of-the-art method SLANT27 ensembled with 27 network tiles, our model performance increases the mean DSC score of the publicly available Colin and CANDI dataset from 0.7264 to 0.7444 and from 0.6968 to 0.7025, respectively.
translated by 谷歌翻译
成功的材料选择对于设计和制造产品的设计自动化至关重要。设计师通过通过性能,制造性和可持续性评估选择最合适的材料来利用他们的知识和经验来创建高质量的设计。智能工具可以通过提供从先前的设计中学到的建议来帮助具有不同专业知识的设计师。为了实现这一目标,我们介绍了一个图表表示学习框架,该框架支持组装中身体的物质预测。我们将材料选择任务作为节点级预测任务,对CAD模型的汇编图表示,并使用图形神经网络(GNN)对其进行处理。在Fusion 360画廊数据集上执行的三个实验协议的评估表明我们的方法的可行性,达到了0.75 TOP-3 Micro-F1分数。提出的框架可以扩展到大型数据集,并将设计师的知识纳入学习过程。这些功能使该框架可以作为设计自动化的推荐系统以及未来工作的基准,从而缩小了人类设计师与智能设计代理之间的差距。
translated by 谷歌翻译
与LTE网络相比,5G的愿景在于提供较高的数据速率,低延迟(为了实现近实时应用程序),大大增加了基站容量以及用户的接近完美服务质量(QoS)。为了提供此类服务,5G系统将支持LTE,NR,NR-U和Wi-Fi等访问技术的各种组合。每种无线电访问技术(RAT)都提供不同类型的访问,这些访问应在用户中对其进行最佳分配和管理。除了资源管理外,5G系统还将支持双重连接服务。因此,网络的编排对于系统经理在旧式访问技术方面来说是一个更困难的问题。在本文中,我们提出了一种基于联合元学习(FML)的大鼠分配算法,该算法使RAN Intelligent Controller(RIC)能够更快地适应动态变化的环境。我们设计了一个包含LTE和5G NR服务技术的模拟环境。在模拟中,我们的目标是在传输的截止日期内满足UE需求,以提供更高的QoS值。我们将提出的算法与单个RL试剂,爬行动物算法和基于规则的启发式方法进行了比较。仿真结果表明,提出的FML方法分别在第一部部署回合21%和12%时达到了较高的缓存率。此外,在比较方法中,提出的方法最快地适应了新任务和环境。
translated by 谷歌翻译
在本文中,我们介绍了新颖的轻质生成对抗网络,这些网络可以有效地捕获图像生成过程中的长期依赖性,并以更简单的体系结构产生高质量的结果。为了实现这一目标,我们首先引入一个远程模块,从而使网络能够动态调整集中抽样像素的数量并增强采样位置。因此,它可以打破卷积算子的固定几何结构的限制,并在空间和通道方向上捕获远距离依赖性。同样,提出的远程模块可以突出像素之间的负面关系,作为稳定训练的正规化。此外,我们提出了一种新一代策略,通过该策略,我们将元数据引入图像生成过程中,以提供有关目标图像的基本信息,这些信息可以稳定并加快训练过程。我们的新型远程模块仅引入几个其他参数,并且很容易插入现有模型以捕获长期依赖性。广泛的实验证明了我们方法具有轻量级体系结构的竞争性能。
translated by 谷歌翻译
从单个放射学图像中学到的功能无法提供有关随着时间的流逝可能发生的病变以及多少变化的信息。从重复图像计算出的时间相关特征可以捕获这些变化,并通过其时间行为来识别恶性病变。但是,纵向医学成像提出了数据获取的稀疏,不规则时间间隔的独特挑战。虽然自我注意事项已被证明是时间序列和自然图像的一种多功能,有效的学习机制,但尚未探索其在稀疏,不规则采样的空​​间特征之间解释时间距离的潜力。在这项工作中,我们通过使用(1)连续时间的矢量嵌入和(2)时间强调自我注意力的权重来提出两种解释时间距离视觉变压器(VIT)。这两种算法是根据合成肺结节的良性与恶性肺癌区分和肺筛查计算机断层扫描研究(NLST)评估的。与标准VIT相比,评估合成结节的时间段VIT的实验表明,在对不规则采样的纵向图像进行分类方面有了基本改进。在从NLST筛选胸部CTS的交叉验证中,我们的方法(分别为0.785和0.786 AUC)显着超过了横截面方法(0.734 AUC)(0.734 AUC),并匹配领先的纵向医学成像算法(0.779 AUC)在良好的良性上的判别性能与恶性分类。这项工作代表了第一个基于自我注意的框架,用于对纵向医学图像进行分类。我们的代码可从https://github.com/tom1193/time-distance-transformer获得。
translated by 谷歌翻译